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Abstract

We developed an ultrasonic longitudinal field time-reversal andMU ltiple SIgnalClassification (MUSIC) based
detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully
multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter
of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every
receiver. We have successfully localized engineered “defects” larger than 1 mm in an optic. We confirmed detection
and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently
high signal-to-noise ratio. We present the theory, experimental results, and simulated results.
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0 Executive Summary

Fully multistatic ultrasonic reflection mode data were collected on the fused silica NIF optic, measuring approximately
429 mm by 429 mm by 50 mm, pictured in Figure 1. The goal is to study the application of acoustic tomography
techniques in detecting, localizing, and sizing features of sizes ranging from 0.1 mm to 5 mm within the optic. The
glass is engineered with four machined hemispherical flaws measuring approximately 5 mm, 3 mm, 1 mm, and 0.5
mm, in diameter. A schematic of the optic, array, and flaws is presented in Figure 2(a). A time-reversal andMU ltiple
SIgnalClassification (MUSIC) [1, 2] based detection map was formed at 1.1 MHz from scattered longitudinal fields.
The MUSIC algorithm is based upon the decomposition of the data into orthogonalsignalandnoisesubspaces, where
the scattered returns from the features are considered as existing within the signal subspace. Using this, points within
the glass can be identified as sources of signal and, thus, thescatterers located. Size information is obtained based
upon characteristics of the decomposition. Figure 2(b) shows the detection map with an 80% peak threshold applied.
We emphasize this is not an acousticimageof the glass but rather adetection mapwith the flaws localized.

The algorithm was able to detect, localize, and successfully resolve the two largest flaws. We believe the re-
turns from the two smallest flaws were lost in the measurementnoise originating from a variety of sources including
the electronics, switching circuitry, and transducer design. Additionally, the transducer array was offset to one side
favoring the insonification of, and enhancing the backscatter from the two largest defects.

Our general conclusion is that a 1 MHz array consisting of contiguous point-like sources cannot provide sufficiently
high signal-to-noise ratio (SNR) to measure the fields scattered from features smaller than 1 mm. We are confident the
array design would be improved by using a higher frequency, 5MHz for example, with an array of individual, spatially
separated transducer elements each within their own housing. This would reduce element-to-element cross-talk and
noise.
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Figure 1:Picture of fused silica NIF optic in mounting bracket. The ultrasonic transceiver array is on the top of the
optic. The four engineered “defects” of sizes 0.5, 1, 3, and 5millimeters are indicated. They are separated by 80 mm.
The 5 mm defect is 90 mm from the right edge.

3



1 32

5 mm3 mm1 mm0.5 mm

(338.625,135)(258.625,135)(178.625,135)(98.625,135)

2005.09.28 Reflection Mode Experiment

Sources

Receivers

Scatterers

Glass Outline

0

L

z
 (

m
m

)

0
206.775 403.625

Lx (mm)

L = 16.875" = 428.625 mm

(a)

λ
0
 = 5.08682 mm

x (mm)

z 
(m

m
)

Detection Map at 1.1 MHz (∆x=∆z=2.54341 mm)
1 32

5 mm3 mm1 mm0.5 mm

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Sources
Receivers
Scatterers
Reconstruction Area
Glass Outline

(b)

Figure 2:(a) Schematic of fused silica NIF optic, multistatic reflection mode array placement, and defects. (b) Time-
reversal & MUSIC based detection map with an 80% threshold applied. The resolution of the detection map isλ0/2
or approximately 2.5 mm.
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1 Introduction

We developed an acoustic flaw detection map algorithm for a fused silica NIF optic. Our technique is to collect a fully
multistatic (multiple spatially diverse receivers simultaneously measuring the scattered field from multiple spatially
diverse sources) ultrasonic data set in either a reflection or transmission mode and process the measured scattered
time series in a singular value decomposition [3] based time-reversal [4, 5, 6, 7, 8] algorithm. AMU ltiple SIgnal
Classification (MUSIC) based detection map [1, 2] was formed at a selected frequency, approximately 1 MHz, using
longitudinal fields measured by a 32 element transceiver array.

We present the experimental results in the Executive Summary of Section 0 and in full detail in Section 2. As we
believe we are signal-to-noise ratio (SNR) limited in the experiments, we describe a numerical analysis method using
simulated data in Section 3. We analyze the SNR results in Section 4. We present our conclusions in Section 5.

The mathematical details of the time-reversal algorithm are presented in Appendices A and B. Typical simulated
numerically generated backscattered time series are presented in Appendix D for various SNR levels. Corresponding
feature detection results are shown in Appendix E.

2 Reflection Mode Experiment

A multistatic reflection mode experiment was performed using a 32 element 1 MHz array. The elements were 3.175
mm wide with a spacing of 6.35 mm. They were designed to have omnidirectional sound transmission and reception.
The element-to-element isolation as rated by the manufacturer (GE Inspection Technologies) was approximately 40
dB. They were switched with a National Instruments SCXI 1160matrix switch. We investigated several pulser/receiver
combinations and concluded the UTEX UT340 was best for our purposes. We investigated methods various methods
for reducing noise but had only limited success.

A schematic of the measurement geometry is presented in Figure 3. The time series were processed using the time-
reversal algorithm of Appendix B at 1.1 MHz. The resulting singular value distribution is presented in Figure 4. We
estimated a signal-to-noise ratio (SNR) of 10 dB. Because ofthe noise, the “zero” singular values are not identically
zero as expected by the theory. However, the SNR is sufficientto identify clearly two scatterers as shown in Figure 4.

We formed a detection map of the scatterers using the pseudospectrum of Eqn. 56. We emphasize this is not an
imageof the scatterers but adetection mapindicating where the algorithm located the features. This map is shown in
Figure 5 where a threshold of 80% has been applied to the pseudospectrum.

The magnitude of the singular value is directly proportional to the scattering volume, that is, the size of the scatterer.
Thus, the larger the singular value; the larger the scatterer. To extract, deterministically, scatterer size from a given
singular value, the system must be calibrated. We did not perform this here.

The results show we have successfully located the two largest scatterers. The returns from the two smallest features
were lost in the noise: we lacked sufficient SNR to detect them. The simulated study presented in Section 3, shows
the system requires an SNR of at least 70 dB to detect, located, and size the smallest scatterer.

3 Signal-To-Noise Ratio Simulations

To study the signal-to-noise ratio (SNR) limitation further, we performed a series of simulated SNR tests using two
operating modes:

• Full centered reflection from the top with a back wall reflection;

• Full centered reflection from the bottom with a top wall reflection.

These transducer geometries, presented in Figure 6, are fully multistatic reflection mode with 32 transceivers arranged
to cover uniformly an entire side of the crystal. The reflecting wall is included via an expanded Green function,

G(r, r′) = G0(r, r
′) −G0(r, 2Z0ẑ − r

′), (1)
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Figure 3:2005/09/28 reflection mode experiment geometry. The transducer array was offset to one side favoring the
insonification of and enhancing the backscatter from the twolargest defects. The square optic isL = 428.625 mm on
a side. The scatterer locations and sizes are indicated.

where

G0(r, r
′) =

eik0(ω)|r−r
′|

4π|r − r′|
, (2)

r ≡ (x, y, z), r′ ≡ (x′, y′, z′), ẑ ≡ (0, 0, 1), and the reflecting wall is located atZ0 = L when the array is on the top
andZ0 = 0 when the array is on the bottom.L is the optic, assumed to be square, side dimension.

For this study, we computed simulated measured scattered field time series using a Foldy-Lax scattering model
([9, 10, 11] and developed in a slightly different manner in [12]) and added zero-mean normally distributed random
noise,N (0, σN ) with a variance computed using:

σN ≡ max
m,n

(∣
∣ψscat(Rr

m,R
t
n, t)

∣
∣
)
10−SNR/20, (3)

where SNR is the desired signal-to-noise ratio andmaxm,n (|ψscat(Rr
m,R

t
n, t)|) is the maximum value of the magni-

tude of the scattered field over all source/receiver (m indexes the receivers;n the sources) combinations and all time.
This results in the signal-to-noise ratio being defined as

SNR ≡ 20 log10

(
maxm,n (|ψscat(Rr

m,R
t
n, t)|)

σN

)

. (4)

Explicitly, we ran our time-reversal algorithm on

ψscat(Rr
m,R

t
n, t) + N (0, σN ), (5)

with SNR values of infinity (no noise), and 10 through 80.
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Figure 4:Time-reversal singular value distribution. The distinct break in the distribution indicates where the threshold
between the non-zero and “zero” singular values was made. There are clearly two singular values which stand out
indicating there are two distinct scatterers.
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Figure 5:Time-reversal & MUSIC based detection map with an 80% threshold applied. The resolution of the detection
map isλ0/2 or approximately 2.5 mm. We successfully detected and located the 3 and 5 mm features but were unable
to identify the 1 mm and 0.5 mm features due to insufficient SNR. We estimate the SNR of the measured data set to be
10 dB. Our simulated analysis shows we require at least 70 dB to detect the 0.5 mm feature.
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We present our results as singular values of the multistaticdata matrix as a function of SNR. We compare these
results with the theoretical scatterer singular values computed via

gr(r) ≡ [G(Rr
1, r), G(Rr

2, r), · · · , G(Rr
M , r)]T ,

gt(r) ≡ P (ω)
[
G(r,Rt

1), G(r,Rt
2), · · · , G(r,Rt

N )
]T
,

σj = k2
0(ω) |τj | ‖gt(Xj)‖ ‖gr(Xj)‖ .

where there areM receivers,N transmitters,{Rr
m}M

m=1 are the receiver locations,{Rt
n}

N
n=1 are the transmitter

locations,{Xj}
J
j=1 are the scatterer locations,gr(r) are the receiver Green function column vectors,gt(r) are the

transmitter (source) Green function column vectors,τj are the scattering amplitudes, andσj are the singular values.
The results, presented in Figure 7, show we require an SNR of at least 70 dB to identify all four of the scatterers.

Observe how the scatterer singular value magnitudes are very robust against noise. This is a characteristic of the MU-
SIC algorithm and shows we can monotonicallysize the scatterers using the singular value magnitude independently
of noise.

Example time series for these simulations are presented in Appendix D.

4 Analysis of Scattering Amplitude & SNR

The Foldy-Lax scattering model requires a scattering amplitude,τ , be assigned to each of the point scatterers. Mathe-
matical convergence of the model imposes a maximum bound on the amplitudes. In our model, we set the scattering
amplitude of the largest (ρ5 = 5mm) inclusion to

τ5 ≡
2π

k2
max

, (6)

and scale the remaining scatterers according to volume:

τn =

(
ρn

ρ5

)3

τ5, (7)

for n = {3, 1, 0.5}mm. Transient scattered responses are modeled by Fourier synthesis. kmax ≡ 2πfmax/v0 is
the largest wavenumber included in the simulation. The values of the scattering amplitudes are listed in Table 1.
The amplitude of the smallest scatterer is shown to be 60 dB down from the largest. We conclude, we require an
improvement of at least this much in signal-to-noise ratio (SNR) to be able to measure and detect the response of
the smallest scatterer after the largest has been measured and detected. The SNR simulations presented in Figure 7
confirm this. The largest scatterer requires a minimum SNR of10 dB; the smallest is detected at 70 dB, requiring an
improvement of 60 dB.

The pseudospectra results are shown in Appendix E for both operating modes. For each SNR case, we present
three figures:

• The pseudospectrum for the top-mounted array;

• The pseudospectrum for the bottom-mounted array;

• The product of the two pseudospectra.

Taking the product of the two pseudospectra improves detectability.
We now compare backscattered amplitudes with respect to theback wall. The amplitude of the field scattered from

the back wall located atz = L is approximately

Aw ≈
1

2L
. (8)
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ρn τn 20 log10(τn/τ5)
5 mm 1.99 × 10−7 0
3 mm 0.216τ5 -13 dB
1 mm 0.008τ5 -42 dB

0.5 mm 0.001τ5 -60 dB

Table 1:Scattering amplitudes.

ρn An 20 log10(An/Aw)
Wall 1.17 × 10−3 0
5 mm 7.38 × 10−10 -124 dB
3 mm 1.59 × 10−10 -137 dB
1 mm 5.91 × 10−12 -166 dB

0.5 mm 7.38 × 10−13 -184 dB

Table 2:Scattered field amplitudes.

The amplitudes of the scattered fields are approximately

An ≈
τn
2zn

, (9)

wherezn is the depth of the scatterer (135 mm). Table 2 lists the gainsrequired to detect the scattered field once the
back wall reflection has been detected.

5 Conclusions

We have successfully demonstrated the ability to localize features in a fused silica NIF optic using an ultrasonic time-
reversal processing algorithm combined with a MUSIC algorithm for generating detection maps. The algorithm was
able to detect, localize, and successfully resolve 3 mm and 5mm machined hemispherical pits. Our current 1 MHz
contiguous transducer array in a single housing provides insufficient signal-to-noise ratio (SNR) to detect the 1 mm
and 0.5 mm features. We concluded from simulated SNR tests that a minimum SNR of 70 dB is required to detect
all pits. Future arrays used for tomographic purposes must have reduced system noise and low cross-talk between
transducer elements. We suggest an array with individuallyhoused elements.

A Forward Field Propagation & Scattering Model

We develop the forward propagation and scattering model which serves as the basis for the time-reversal algorithm.
We begin by considering the wave equation

[

∇2 −
n2(r)

c20
∂2

t

]

ψtot(r,Rt
n, t) = −p(r,Rt

n, t), (10)

where we have assumed a variable background through therefractive index

n(r) ≡
c0
c(r)

, (11)

t is the time variable1, andR
t
n is the spatial location of then-th transmitter. We Fourier transform temporally Eqn. 10

using the transform of Appendix C:
[
∇2 + k2

0n
2(r)

]
ψtot(r,Rt

n, ω) = −p(r,Rt
n, ω), (12)

1The appearance oft in a functional argument list indicates the equation or function is taken to be in the time domain. Anω in the same position,
indicates the function is in the temporal frequency domain.
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Figure 6:Full centered reflection geometry from two views: one from the top; one from the bottom. The simulation in-
cluded reflection from the opposing wall. For this SNR study,we considered 32 multistatic reflection mode transceivers
equally distributed over one side of the crystal. The scattering amplitudes used in the simulations are shown below
the scatterers. They were set to be directly proportional tothe scattering volume. Refer to Section 4 and Appendix B
for the details on how they were defined and set.
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Figure 7:Singular value SNR results for the full centered reflection geometries with a reflecting wall. We considered
SNR values of SNR values of infinity (no noise), and 0 through 80, and compared the results with the theoretical values
indicated by the black asterisks. The vertical line delimits the first four singular values corresponding to each of the
four scatterers. The dashed horizontal line lies 75% below the smallest scatterer and serves to distinguish between the
non-zero and “zero” singular values for the MUSIC algorithm. These results show we require an SNR of at least 70
dB to identify all four scatterers. Observe that the singular value “noise floor” increases as SNR decreases obscuring
the smaller scatterers.
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where thebackground wavenumberis defined as

k0 ≡
ω

c0
.

When solving the forward problem, it is frequently convenient to cast Eqn. 12 into an integral equation. We do so
by addingk0ψ

tot(r,Rt
n, ω) to both sides of Eqn. 12, and moving the inhomogeneous term tothe right hand side:

[
∇2 + k2

0(ω)
]
ψtot(r,Rt

n, ω) = −p(r) −
[
k2
0n

2(r) − k2
0

]
ψtot(r,Rt

n, ω). (13)

Define theobject functionas

o(r) ≡ n2(r) − 1, (14)

and express Eqn. 13 as
[
∇2 + k2

0(ω)
]
ψtot(r,Rt

n, ω) = −p(r,Rt
n, ω) − k2

0o(r)ψ
tot(r,Rt

n, ω). (15)

The first term on the right-hand side of Eqn. 15,p(r,Rt
n, ω), is theprimary sourceapplied to then-th transmitter. The

second, source-like, term on the right-hand side,k2
0o(r)ψ

tot(r,Rt
n, ω), is known as thesecondary source. We may

use Green’s theorem to cast the differential equation of Eqn. 15 into an integral equation [13],

ψtot(r,Rt
n, ω) =

∫

dr′ G0(r, r
′, ω) p(r′,Rt

n, ω) +

k2
0(ω)

∫

dr′ G0(r, r
′, ω) o(r′) ψtot(r′,Rt

n, ω). (16)

We define theprimary, incident, or backgroundfield as

ψinc(r,Rt
n, ω) ≡

∫

dr′ G0(r, r
′, ω) p(r′,Rt

n, ω), (17)

so that Eqn. 16 reads

ψtot(r,Rt
n, ω) = ψinc(r,Rt

n, ω) + k2
0(ω)

∫

dr′ G0(r, r
′, ω) o(r′) ψtot(r′,Rt

n, ω). (18)

Thescattered fieldis then defined as

ψscat(r,Rt
n, ω) ≡ ψtot(r,Rt

n, ω) − ψinc(r,Rt
n, ω)

= k2
0(ω)

∫

dr′ G0(r, r
′, ω) o(r′) ψtot(r′,Rt

n, ω). (19)

We observe that with the primary field satisfying
[
∇2 + k2

0(ω)
]
ψinc(r,Rt

n, ω) = −p(r,Rt
n, ω), (20)

the scattered field obeys

[
∇2 + k2

0

]
ψscat(r,Rt

n, ω) = −k2
0o(r)ψ

tot(r,Rt
n, ω), (21)

or alternatively,
[
∇2 + k2

0n
2(r)

]
ψscat(r,Rt

n, ω) = −k2
0o(r)ψ

inc(r,Rt
n, ω). (22)
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A.1 Born Approximation

One potential method of simplifying Eqn. 22 for solving is touse a perturbation method approach. We express the
express the refractive index and scattered field as [14]

n2(r) = n2
0(r) + εn1(r) + ε2n2(r) + · · ·

︸ ︷︷ ︸

≡ δn(r)

,

ψscat(r,Rt
n, ω) = ψscat

DWB(r,Rt
n, ω) + εψscat

1 (r,Rt
n, ω) + ε2ψscat

2 (r,Rt
n, ω) + · · · ,

(23)

respectively, substitute them into Eqn. 22, and equating like powers ofε. Doing so we obtain the follow set of
equations:

[
∇2 + k2

0n
2
0(r)

]
ψscat

DWB(r,Rt
n, ω) = −k2

0o(r)ψ
inc(r,Rt

n, ω), (24)
[
∇2 + k2

0n
2
0(r)

]
ψscat

1 (r,Rt
n, ω) = −k2

0n1(r)ψ
scat
DWB(r,Rt

n, ω), (25)
[
∇2 + k2

0n
2
0(r)

]
ψscat

2 (r,Rt
n, ω) = −k2

0n2(r)ψ
scat
DWB(r,Rt

n, ω) −

k2
0n1(r)ψ

scat
1 (r,Rt

n, ω), (26)
...

[
∇2 + k2

0n
2
0(r)

]
ψscat

l (r,Rt
n, ω) = −k2

0

l−1∑

m=0

nl−m(r)ψscat
m (r,Rt

n, ω). (27)

The Green function for the left hand side operators of Eqns 24through 26 satisfies
[
∇2 + k2

0n
2
0(r)

]
G(r, r′, ω) = −δ(r − r

′). (28)

Using this to cast Eqn. 24 into an integral equation, we obtain thedistorted wave Born approximationto the scattered
field,

ψscat
DWB(r,Rt

n, ω) = k2
0

∫

dr′ G(r, r′, ω) o(r′) ψinc(r′,Rt
n, ω). (29)

Whenn0(r) ≡ 1, this reduces to the standardBorn approximation[15],

ψscat
B (r,Rt

n, ω) = k2
0

∫

dr′ G0(r, r
′, ω) o(r′) ψinc(r′,Rt

n, ω). (30)

In free space we have

G0(r, r
′, ω) ≡

1

4π |r − r′|
eik0|r−r

′| (31)

A.2 Incident Field

The incident field is taken to be a spherical wave due to a pointsource located atRt
n. We express this mathematically

as

ψinc(r) = P (ω) G0(r,R
t
n, ω), (32)

whereP (ω) is the temporal spectrum of the incident field, andG0(r, r
′, ω) is the Green function response of the

medium. We then express Eqn. 30 as

ψscat
B (r,Rt

n, ω) = k2
0 P (ω)

∫

dr′ G0(r, r
′, ω) o(r′) G0(r

′,Rt
n, ω). (33)

This is our forward scattering model for the time-reversal scattering target detection described in the next section.
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B Time-Reversal

Mathematically, time-reversal (TR) falls into a category of imaging and detection techniques based upon decomposi-
tion of either the measured data, the scattering operator, or the object to be imaged. TR decomposes the measured data
via a singular value decomposition [3, 2]. We explain as follows. Define thereceiverandtransmitterGreen function
column vectors as follows

gr(r) ≡ [G0(R
r
1, r), G0(R

r
2, r), · · · , G0(R

r
M , r)]

T
, (34)

gt(r) ≡ P (ω)
[
G0(r,R

t
1), G0(r,R

t
2), · · · , G0(r,R

t
N )

]T
, (35)

where there areM receivers,N transmitters,{Rr
m}M

m=1 are the receiver locations,{Rt
n}

N
n=1 are the transmitter

locations, and for notational compactness, we have omittedtheω dependence.
Using these definitions, the forward model of Eqn. 33 represents the integral of the object function with the outer

product of the Green function vectors:

D(ω) = k2
0(ω)

∫

dr gr(r) o(r) g
T
t (r), (36)

whereD(ω) is theM ×N of measured scattered field values,ψscat
B (Rr

m,R
t
n, ω).

In the general case where all of the transmitters are simultaneously activated, and the data measured at all the
receivers, we may represent the forward scattering processby a matrix multiplication of the form

v = Ke

wherev = v(ω) is the linear array of output values, viewed as anM dimensional column vector, measured at the
receivers,e = e(ω) is theN dimensional column vector of applied excitations to the transmitters,K is theM × N
multistatic matrix. We will not explicitly display the frequency variableω in subsequent equations. In time-reversal
imaging the object profileo(r) consists of a sum ofJ ≤ min(N,M) disjoint profilesoj(r) each centered at a spatial
locationXj and each having an effective size that is small relative to the wavelength; i.e.,

o(r) =

J∑

j=1

oj(r − Xj) =

J∑

j=1

τj δ(r − Xj). (37)

The goal of time-reversal imaging is then to estimate the locationXj and strength of each scatterer. If we substitute
Eqn. 37 into Eqn. 36 we obtain

K = k2
0(ω)

J∑

j=1

∫

dr gr(r) oj(r − Xj) g
T
t (r) = k2

0(ω)

J∑

j=1

τj gr(Xj) g
T
t (Xj) (38)

where

τj =

∫

dr oj(r) (39)

and where we have made use of the assumption that the targets are small relative to the wavelength. The quantitiesτj
thus represent effectivereflection coefficientsfor the targets and the goal of time-reversal imaging is thento estimate
these reflection coefficients as well as the target locationsXj .

B.1 Singular Value Decomposition of the Multi-Static Matrix

The theory of time-reversal imaging depends on the ability to perform a singular value decomposition (SVD) of the
multistatic data matrixK. In particular, we consider the singular system

K : CN → CM Kei = σivi, (40)

K† : CM → CN K†vi = σiei, (41)
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wherei labels the singular systemei, vi, σi. The normal equations for this system are

K†Kei = σ2
i ei, (42)

KK†vi = σ2
i vi, (43)

where theN ×N matrix
T = K†K, (44)

Transmitter to Receiver
︷ ︸︸ ︷

T1 = K†K

Receiver to Transmitter
︷ ︸︸ ︷

T2 = KK†

is the well-knowntime-reversal matrix. The singular vectors{ei}
N
i=1 are orthonormal and span the spaceCN while

the singular vectors{vi}
M
i=1 are orthonormal and span the spaceCM . There are a total of min(N,M) singular values

σj ≥ 0.
If we substitute the expression for theK matrix given in Eqn. 38) into Eqns. 40 and 41 we obtain

k2
0(ω)

J∑

j=1

τjgr(Xj)g
T
t (Xj)ei = σivi (45)

k2
0(ω)

J∑

j=1

τ∗j g
∗
t (Xj)g

†
r(Xj)vi = σiei (46)

It follows from the above equations that the singular vectors vi are linear combinations of the receiver array Green
function vectorsgr(Xj) while the singular vectorsei are linear combinations of the complex conjugates of the trans-
mitter array Green function vectorsg∗t (Xj). An important special case occurs when these two sets of Green function
vectors are orthogonal; i.e., when the following two equations are satisfied:

g†r(Xj)gr(Xj′ ) = ‖gr(Xj)‖
2
δj,j′ = Hr(Xj ,Xj′ ) (47)

g†t (Xj)gt(Xj′ ) = ‖gt(Xj)‖
2 δj,j′ = Ht(Xj ,Xj′ ) (48)

whereδj,j′ is the Kronecker delta function and

||gr(Xj)||
2 = g†r(Xj)gr(Xj)

||gr(Xj)||
2 = g†r(Xj)gr(Xj)

are the squared norms of the Green function vectors evaluated at the target pointXj . If Eqn. 47 holds then we say that
the targets are well resolved by the receiver arraywhile if Eqn. 48 holds we say thatthe targets are well resolved by
the transmitter array. When both equations hold then the targets are well resolvedwith respect to both the transmitter
and receiver arrays.

The rational for the above terminology is apparent if we simply note that the inner products in Eqns. 47 and 48 are,
respectively, the PSF’sHr(Xj ,Xm′) andHt(Xj ,Xm′). Thus, for example, the inner productg†r(Xj)gr(Xj′ ) is the
image of a point target located atXj′ formed at pointXj by the receiver array. An entirely analogous interpretation
can be given the inner productg†t (Xj)gt(Xj′ ); i.e., asthe image of a point target located atXj′ formed at pointXj by
the transmitter array.The case ofwell resolved targetsthus corresponds to the case where the targets are sufficiently
well separated that the PSF of either the transmitter or receiver array does not significantly overlap any target other
than the one on which it is focused.

B.2 Well-resolved Targets

We will assume hence forth that the targets are well resolvedwith respect to both the transmitter and receiver arrays,
and that both Eqns. 47 and 48 hold. In this case it is easy to show that the singular system{ei, vi, σi > 0} can
be related in a one-to-one manner with theJ ≤ min(N,M) scattering targets. Indeed, it follows at once from the
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Transmitter CN Space ReceiverCM Space

LetNσ ≡ min(N,M)

Kej = σjvj , j = 1, · · · , J
Kej = 0, j = J + 1, · · · , Nσ

e†jej′ = δjj′

St ≡ span {ej , j = 1, · · · , J}
N t ≡ span {ej , j = J + 1, · · · , Nσ}
CN = St ⊕N t

K†vj = σjej , j = 1, · · · , J
K†vj = 0, j = J + 1, · · · , Nσ

v†jvj′ = δjj′

Sr ≡ span {vj , j = 1, · · · , J}
N r ≡ span {vj , j = J + 1, · · · , Nσ}
CM = Sr ⊕N r

Table 3:Mathematical relations of the transmitter and receiver spaces defined by the transmitter and receiver singular
vectors. St andN t represent the transmitter signal and noise subspaces, respectively. Sr andN r represent the
receiver signal and noise subspaces, respectively.

orthogonality of the Green function vectors that the singular vectors having non-zero singular values for well-resolved
targets are given by

ej =
g∗t (Xj)

||gt(Xj)||
, (49)

vj =
gr(Xj)

||gr(Xj)||
(50)

wherej = 1, 2, . . . , J . Moreover, the non-zero singular valuesσj are given by

σj = k2
0(ω) |τj | ‖gt(Xj)‖ ‖gr(Xj)‖ . (51)

We conclude thatthe scatterer strengths are computed directly from the singular valueswhich, in turn, are readily
computed from the measured multistatic data matrixK. Moreover,the singular vectors give the location of the
targets. Indeed, the coherent image formed using the singular vector ej will generate the PSF of the transmitter array
centered atXj while the coherent image formed using the singular vectorvj will generate the PSF of the receiver
array centered atXj .

B.3 Pseudospectrum

For well resolved targets, the{en}
N
n=1, and{vm}M

m=1 form two orthonormal sets which span theCN andCM spaces,
respectively. The transmitter and receiver spaces may be subdivided intosignalandnoisesubspaces based upon the
span of the{ej}

J≤min(N,M)
j=1 and{vj}

J≤min(N,M)
j=1 vectors whereJ is the number of point scatterers. These properties

are summarized mathematically in Table 3.
We may use these properties to construct an algorithm to image the scatterers. Consider the transmitter and receiver

Green’s function vectors,gt(r) andgr(r), as defined in Eqn. 34 and Eqn. 35, respectively2. When the point at which

2We have dropped the explicit dependence upon the temporal frequency,ω, in the notation.
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these Green’s function vectors falls upon a scatterer location,Xj , we have

eT
j gt(Xj) =

1

‖gt(Xj)‖
g†t (Xj)gt(Xj) = ‖gt(Xj)‖,

v†jgr(Xj) =
1

‖gr(Xj)‖
g†r(Xj)gr(Xj) = ‖gr(Xj)‖,







for j = 1, · · · , J, (52)

and
eT

j′gt(Xj) = 0,

v†j′gr(Xj) = 0,






for j′ = J + 1, · · · ,min(N,M), (53)

where we have used the definitions of theej andvj singular vectors from Eqns. 49 and 50. For other evaluation points,
that is, for spatial locations,r, which are not scatterer locations, we have

eT
j′gt(r) 6= 0,

v†j′gr(r) 6= 0,






for j′ = J + 1, · · · ,min(N,M), andr 6= Xj . (54)

Consider the following sum of the inner products of the singular vectors and transceiver Green’s function vectors:

Q(r) ≡

min(N,M)
∑

j=J+1

[∣
∣
∣eT

j gt(r)
∣
∣
∣ +

∣
∣
∣v

†
jgr(r)

∣
∣
∣

]

. (55)

When we evaluate Eqn. 55 at any scatterer location,r = Xj , we have

Q(Xj) ≡ 0, for j = 1, · · · , J,

where we have used the orthogonality property of Eqn. 53. We now define thepseudospectrumto be

P (r) ≡
1

min(N,M)
∑

j=J+1

[∣
∣
∣eT

j gt(r)
∣
∣
∣ +

∣
∣
∣v

†
jgr(r)

∣
∣
∣

]

+ σr

, (56)

whereσr is a regularization parameter. For well resolved scatterers, P (r) will have distinct peaks at each of the
scatterer locations. We wish to emphasize that the pseudospectrum is adetectionmap rather than an actual image of
the scatterers. By Eqns. 53 and 54, we observe that Eqn. 56 is highly peaked (in fact, it diverges forσr ≡ 0) when
r ≡ Xj .

We note the expression in Eqn. 56 combines the transmitters and receivers into a “super-array” with steering
vectorseT

j applied to the transmitters, andv†j applied to the receivers.

C Standard Fourier Transforms

We summarize without comment our Fourier transform definitions.

Forward in time

U(r, ω) =

∫ ∞

−∞

dt u(r, t) eiωt
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Inverse in time

u(r, t) =
1

2π

∫ ∞

−∞

dω U(r, ω) e−iωt

Forward in space

Ũ(k, ω) =

∫ ∞

−∞

dr U(r, ω) e−ik·r

Inverse in space

U(r, ω) =
1

(2π)3

∫ ∞

−∞

dk Ũ(k, ω) eik·r
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E Pseudospectra Results
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Top, SNR = 10 dB
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Combined thresholded pseudospectra at an SNR of 10 dB.
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Top, SNR = 20 dB
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Combined thresholded pseudospectra at an SNR of 20 dB.
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Top, SNR = 30 dB
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Top, SNR = 40 dB
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Top, SNR = 50 dB
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Top, SNR = 60 dB
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Top, SNR = 65 dB
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33



Top, SNR = 70 dB
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Combined thresholded pseudospectra at an SNR of 70 dB.
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Top, SNR = 75 dB
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Combined thresholded pseudospectra at an SNR of 75 dB.
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Top, SNR = 80 dB
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Combined thresholded pseudospectra at an SNR of 80 dB.
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Top, SNR = Inf dB
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